
i

Concepts Seeds Gathering and

Dataset Updating Algorithm for

Handling Concept Drift

By

Ibrahim Elbouhissi

Supervised By

Prof. Nabil M. Hewahi

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of Master in Information

Technology

January. 2015

غزة –الجامعة الإسلامية

اـــــــــات العليــــــــادة الدراســــعم

اتـــــــــــــا المعلومـــــــة تكنولوجيـــــكلي

 برنامج تكنولوجيا المعلومات

Islamic University – Gaza

Deanery of Post Graduate Studies

Faculty of Information Technology

Program of Information Technology

anabrees
Rectangle

ii

Abstract
Our life does not stop evolving and changing and our systems should be

adapted to such behavior. The data mining is considered important and vital tool that

helps us to get valuable information from hidden patterns and data. The main task in

data mining is learning models. The traditional way for learning is called batch

learning, which assumes that all training examples are available at the time of learning.

In data mining, the phenomenon of change in data distribution over time is known as

concept drift. The traditional classification models do not handle this change.

In this research, we introduce a new approach called Concepts Seeds Gathering

and Dataset Updating algorithm (CSG-DU) that gives the traditional classification

models the ability to adapt and cope with concept drift as time passes. CSG-DU is

concerned with discovering new concepts in data stream and its main target is to

increase the classification accuracy using any classification model when changes occur

in the underlying concepts. Handling concept drift is done by selecting the data

instances that represent the new concepts and inject them into the training dataset.

Our proposed approach has been tested using synthetic and real datasets that

represent different types of concept drift (sudden, gradual and incremental). The

experiments conducted show that after applying our approach, the classification

accuracy increased from low values to high and acceptable ones. Finally, a comparison

study between CSG-DU and Set Formation for Delayed Labeling algorithm (SFDL) has

been conducted; SFDL is an approach that handles sudden and gradual concept drift.

Results indicate that our proposed approach outperforms SFDL in terms of

classification accuracy.

Keywords:

Data Mining, Concept Drift, Machine learning, Concept Drift Detection, Data Stream

Mining, Classification.

iii

:عنوان البحث

لمعالجة تغير المفهوم خوارزمية جمع بذور المفاهيم وتحديث مجموعة البيانات

 ملخص:

حياتنا لا تتوقف في تطورها وتغيرها ولا بد من جعل أنظمتنا وبرامجنا تتكيف وتتلاءم مع طبيعة

هذا التغير والتطور. في الآونة الأخيرة، يعتبر التنقيب عن البيانات أداة مهمة وحيوية في

 .بقاسالمخفية والبيانات المخزنة م أنماط البياناتالمساعدة على الحصول على معلومات مفيدة من

هذه المعلومات المفيدة تساعد بشكل كبير في عمليات التنبؤ وأخذ القرارات في بيئات العمل

وتعتبر عملية تعليم المختلفة والمجالات العديدة كالطب والأرصاد الجوية وأمن المعلومات.

 تخخذ بعين لاالطرق التقليدية في تعليم النماذج عن البيانات.تنقيب الالرئيسية في النماذج العملية

الاعتبار إمكانية حصول تغير في مفاهيم البيانات حيث يتم بناء النموذج من مجموعة من الأمثلة

الثابتة والتي لا يتوقع أن تتغير مع مرور الزمن. ولكن في التنقيب عن البيانات، فإن التغير في

 لتغير. يم النماذج مع هذا االمفاهيم والأمثلة يعتبر امرا طبيعيا وعليه فلا بد أن تتكيف طرق تعل

خوارزمية جمع بذور المفاهيم وتحديث مجموعة نقدم حل يطلق عليه في هذا البحث

ث بمعالجة مشكلة تغير المفهوم بحي الحل حيث يقوم ،المفهومالبيانات لمعالجة تغير

لإضافة اجميع خوارزميات التعليم الخاصة بالتصنيف بدون الحاجة لتعديل الأصل او تعمل مع

تكيفة موعة البيانات)التدريبية(وجعلها عليها. يقوم الحل باكتشاف المفاهيم الجديدة وتحديث مجم

الهدف الرئيسي هو الحفاظ على دقة تصنيف عالية عند مع التغير الذي يطرأ على المفاهيم.

 حدوث التغير في المفاهيم.

ت تمثل عدة أنواع من التغير في المفاهيم الحل المقدم على خمس أنظمة متعددة المجالا اختبارتم

والمتدرجة والمتراكمة(وأظهرت النتائج تفوق الحل المقترح في جميع التجارب على)المفاجئة

 لتصنيف،االطرق التقليدية ولم يكن النظام المقترح في أي تجربة أسوأ من الطرق التقليدية في

لة عل التغيرات الغير متوععة ع طري ععادة ة تعليم الاطريقكما وتم مقارنة الحل المقترح مع

معالجة التغير في المفاهيم وأظهر الحل المقترح نتائج أفضل والمهتمة ب تشكيل مجموعة التدريب

 الطريقة.تلك من

كيف مجموعة ت التصنيف، المفاهيم،تغير البيانات،التنقيب عن الالة،: تعليم الكلمات المفتاحية

 التدريب.

iv

Acknowledgement

All thanks and praises to Allah who granted me the strength, support, guidance and

eased the difficulties, which I faced during the accomplishment of this thesis.

I would like to thank my supervisor Prof. Nabil M. Hewahi for his strong support and

guidance throughout the duration of this research. I am very grateful to him for

working with me. It has been an honor to work with him.

I would like to express my appreciation to the academic staff of Information

Technology College at the Islamic University-Gaza.

v

Table of Contents
Abstract ... ii

Acknowledgement ... iv

Table of Contents ... v

List of Figures ... vii

List of Tables ... ix

List of Abbreviations ... x

Introduction .. 1

1.1 Concept Drift Definition .. 2

1.2 Concept Drift Types ... 4

1.3 Drift Detection Problem In Data Stream ... 5

1.4 Drift Detection Methods .. 6

1.5 Existing Strategies for Concept Drift Learning .. 6

1.6 Research Problem Statement .. 7

1.7 Research Objectives ... 7

1.7.1 Main objective .. 7

1.7.2 Specific objectives ... 8

1.8 Research Scope and Limitation .. 8

1.9 Significance of the Thesis... 8

1.10 Research Methodology... 9

1.11 Outline of the Thesis .. 10

Related Work ... 11

2.1 Context Surveys Of The Concept Drift Problem .. 11

2.2 Concept Drift Handling Approaches .. 13

2.3 Concept Drift Detection Approaches ... 16

Methodology and the Proposed Model .. 20

3.1 Fundamentals ... 20

3.1.1 Distance Functions ... 20

3.1.2 Statistical Process Control ... 21

3.2 The Proposed Approach – General Overview ... 22

3.2.1 Early Drift Detection Method ... 23

3.3 The Proposed Approach – Detailed Description ... 26

Experimental Results and Evaluation .. 30

4.1 Datasets ... 30

vi

4.2 Experiments Setup ... 33

4.2.1 Experimental Environment ... 33

4.2.2 Tools ... 33

4.2.3 Experiment Procedure .. 34

4.2.4 Used Classifiers ... 35

4.3 Experimental Results and Discussion ... 36

4.3.1 Sudden Drift Experiments (STAGGER and SEA datasets) 36

4.3.2 Gradual Drift Experiments (Wave and Credit datasets) 40

4.3.3 Incremental Drift Experiments (Hyperplane dataset) 47

4.4 Results and Discussion Summary ... 50

Conclusion and Future Work ... 51

5.1 Conclusion... 51

5.2 Future work .. 52

References ... 53

vii

List of Figures

1.1: Classification process when x is known and y is unknown 3

1.2: Learning under concept drift ... 4

1.3: Concept drift types ... 4

1.4: Methodology Steps .. 9

2.1: A taxonomy of adaptive supervised learning techniques 11

2.2: Four modules of adaptive learning systems with a taxonomy of methods 12

2.3: Taxonomy of Detection Methods .. 16

3.1: SPC levels example .. 21

3.2: A general overview of the proposed solution as blocks 22

3.3: Pseudo-code Early Drift Detection Method (EDDM) ... 24

3.4: Global view for concept drift learning scenario using the proposed approach 25

3.5: Initialization phase pseudo code ... 26

3.6: Instances selection criterion to put them in updating pool 27

3.7: Updating Training Dataset Example ... 28

3.8: Pseudo-code for Concept Seeds Gathering and Dataset Updating Algorithm

(CSG-DU) ... 29

4.1: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(STAGGER dataset) ... 38

4.2: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(SEA dataset – Decision Tree) .. 39

4.3: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(SEA dataset – Naïve Bayes) .. 39

4.4: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(SEA dataset – k-nearest) .. 40

4.5: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(Wave dataset – Decision Tree) .. 42

4.6: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(Wave dataset – Naïve Bayes) .. 42

4.7: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(Wave dataset – k-nearest) .. 43

viii

4.8: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(Credit dataset – Decision Tree) ... 45

4.9: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(Credit dataset – Naïve Bayes) .. 46

4.10: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(Credit dataset – k-nearest) ... 46

4.11: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(Hyperplane dataset – Decision Tree) ... 48

4.12: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(Hyperplane dataset – Naïve Bayes) ... 49

4.13: Accuracy over batches arrival for CSG-DU algorithm and ordinary classifier

(Hyperplane dataset – k-nearest) ... 49

ix

List of Tables
4.1: Characteristics of the used datasets .. 31

4.2: Classifiers models used in experiments ... 34

4.3: Results of STAGGER dataset .. 37

4.4: Results of SEA dataset ... 38

4.5: Comparative study between SFDL and CSG-DU .. 40

4.6: Results of Wave dataset ... 41

4.7: Results of Credit dataset .. 44

4.8: Comparative study between SFDL and CSG-DU for Credit dataset 47

4.9: Results of Hyperplane dataset .. 47

4.10: Summary of Results ... 50

x

List of Abbreviations

ADWIN Adaptive Windowing

CCP Conceptual Clustering and Prediction Framework

CSG-DU Concepts Seeds Gathering and Dataset Updating

CVFDT Concept-handling Very Fast Decsion Tree

DDM Drift Detection Method

DWM Dynamic Weighted Majority

EDDM Early Drift Detection Method

JDK Java Development Kit

kNN the k-nearest neighbor classifier

ML Machine learning

MOA Massive Online Analysis

SFDL Adaptive Training Set Formation Algorithm for Delayed Labeling

SPC Statistical Process Control

VFDT Very Fast Decision Tree

WAH Window Adjustment Heuristic

1

CHAPTER 1

Introduction
Data never sleeps and we live in a dynamic world, which does not stop evolving,

and changing. Humanity depends on the power of computers, and hence, many areas

in our life have changed completely through the use of this power. Our life procedures

and tasks have become easier as a result of the ability to process data at high speeds,

exchanging information between people over networks, connecting services over the

internet and storing trillions of gigabytes of data on servers.

Current applications and services need to be able to handle changing and large datasets

coming from growing and changing environments.

Machine learning (ML) first appeared as a branch of Artificial Intelligence, and

aims to make computers and systems learn from data in a way as to be able to achieve

specific objectives and tasks. Such computers and systems that have the ability to learn

from data are used in many fields like business, health, manufacturing, engineering

and science[25].

Data mining is considered as an interdisciplinary subfield of computer science that

uses techniques from ML, databases, and statistics to discover unseen patterns in large

datasets. Data mining can be defined as the application of specific algorithms for

extracting patterns from data[20]. Another definition of data mining is the process that

involves the use of sophisticated data analysis tools to discover previously unknown,

valid patterns and relationships in large datasets[53]. With the continuous growth and

changing of data in real current applications and systems, and with the great need to

support accurate decision making, the embedding of data mining in such evolving and

changing environments will be in great demand over the next years.

One of the ten most challenging tasks in data mining is handling concept drift or

concept shift, which occurs when the relation between input and output changes over

time or when the distribution of the input attributes changes over time [66]. The first

is called real concept drift, and the second is called virtual concept drift. Concept drift

complicates the processes involved in the learning model and requires special

2

techniques different from those, which are commonly used to treat incoming data that

represent the current concept [25] [68].

Change detection is a key issue when handling concept drift and it is considered

as one of the most challenging problems when learning from data streams. Change

detection aims to characterize and quantify concept drift by identifying change points

or small time intervals during which changes occur [25]. Most of classification

methods based on the assumption that the historical data involved in building and

validating the model is the best indicator of what will happen in the future[67]. This

assumption leads to identify the change detection problem as the problem of using the

collected data to detect changes in the underlying processes[11]. Change detector

monitors real-time measures and send alarms as soon as drift is detected. A good

detection of change reduces detection delay and minimizes the error of the

classification. Measures monitored are usually classifier’s performance indicators or

data properties in order to indicate the change point in time [30].

In this thesis, we consider the problem of concept drift detection and dataset

adaptation in supervised learning. We introduce a new idea for online adapting training

dataset when handling concept drift.

In the rest of this chapter, we give an introductory background to the main topic of

this thesis, namely concept drift definition and types of concept drift. We present the

existing general concept drift learning strategies. Later, we define and narrow down

our research problem, formulate the general objectives, summarize the main

contributions of the thesis and present its significance. We then state the general used

strategy to accomplish the research. Finally, we present the structure of the thesis.

1.1 Concept Drift Definition

The classification problem, independent of the presence or absence of concept

drift, may be formally defined as follows: we aim to predict a target categorical or

discrete variable y ∈ 𝑅1 in classification tasks given a set of input features X ∈ 𝑅𝑝.

For example, an instance is one pair of (X,y), where X is a set of attributes related to

student activities in class and y is a categorical variable that predicts the grade of the

student. In the training dataset, which is used for building the model, both X and y are

3

known. As shown in Figure 1.1 with new examples, in which we apply the

classification model, X is known but y is not known at the time of classification.

Figure 1.1: Classification process when x is known and y is unknown [58]

Based on Bayesian decision theory [25, 68] the classification decision for instance

X can be described by the prior probabilities of the class p(y) and class conditional

probability density functions p(X|y) for all classes y=1,…,c where c is the number of

classes. The classification decision is made according to the posterior probabilities of

the classes, which for class y can be represented as:

𝑝(𝑦|𝑋)=
𝑝(𝑦)𝑝(𝑋|𝑦)

𝑝(𝑋)
… … … … … … … … … ..(1.1)

where p(X) is an evidence of X, which is constant for all the classes of y. As first

presented by[38], concept drift may occur in three ways:

1- Class prior P(y) might change over time.

2- The distribution of one or several classes p(X|y) might change.

3- The posterior distribution of the class memberships p(y|X) might change.

Sometimes change in p(X|y) is referred to as virtual drift and change in p(y|X) is

referred to as real drift. From a practical point of view, it doesn't differ whether the

drift is real or virtual, since p(y|X) depends on p(X|y) as shown in equation (1) [68].

In this proposal, concept drift refers to the change without considering if it is real or

virtual. The concept drift referred to in this thesis considers the change in a population

that makes a learned model lose its accuracy, as shown in Figure 1.2.

4

Figure 1.2: Learning under concept drift

The core assumption when dealing with concept drift in model learning is the

uncertainty as to when the concept change will happen. This implies that changes,

whose occurrence is known, such as periodic changes, are not considered in concept

drift problems.

1.2 Concept Drift Types

Changes in concept may occur in different forms, as illustrated in Figure 1.3.

Figure 1.3: Concept drift types [68]

5

A drift may happen suddenly/ abruptly, in which a concept is completely replaced

by another one. For example, a group of customers previously interested in an old

mobile device are now interested in another one. This type of concept drift is

considered the simplest of concept drift types [68].

Another type of concept drift is gradual drift, which means that there are two

concepts online. As time passes, the strength of one of them decreases and the other

increases. For example, a user interest may change over time from reading political

news to reading food recipes.

The previous two types of concept drift involve two concepts changing suddenly

or gradually. Incremental concept drift is a special case of gradual drift but with more

than two concepts that are increasing and decreasing as time passes.

Finally, the last type of concept drift is called recurring context, and happens when

previously active concept reappear after some time. Recurring context differs from

periodic change, in that it is not known when the change will occur.

1.3 Drift Detection Problem In Data Stream

In stationary data, the error rate of model decreases when the number of examples

increases since these examples come from the same distribution. A significant increase

of error rate suggests a change in the process that generates data [56]. It is reasonable

to assume that the process, which generates data, will change and evolve over large

periods of time. Whenever new concepts replace old ones, the current model becomes

inaccurate and the old observations become irrelevant. In such case, the model should

be adapted with the new distribution of data and reflect the new concepts.

In data stream, it is necessary to asses if a concept is changing over time or not.

This assessment can be done by performing tests in order to determine if there is a

change in the generated distribution. The null hypothesis is that the new examples and

the old ones come from the same distribution. The alternative hypothesis is that they

are generated from two different distributions [25].

6

1.4 Drift Detection Methods

Detection methods characterize techniques and mechanisms for detecting changes.

Detection methods provide meaningful description about change occur in evolving

data and quantify this change. Detection methods may follow two different approaches

[21]:

1- Monitoring model performance indicators: some performance indicators are

monitored over time such as model error rate, recall and precision. Based on

predefined thresholds, changes can be detected using these performance

indicators.

2- Monitoring distributions of two different time-windows: in this type of

monitoring, the distribution of a window on specific time is measured and

compared to another one on different time. Usually the first window is called

reference window summarizes past information and the other one represents

the most recent examples.

1.5 Existing Strategies for Concept Drift Learning

In order to handle the concept drift problem, there are three strategies can be used[16]:

1- A new system is developed periodically every certain periods –depends on the

application- using all the available data. This strategy is not effective because

of its computation cost. Also after long time, the new patterns are lost since

they are merged with old ones causing the learner accuracy degrade.

2- Adaptive learner is built by adding new parameters to be used in algorithms.

This extra information help in identifying and coping concept drift. This

strategy is not suitable for many applications where changes in the environment

are unpredictable.

3- Retrain the model using new data. This strategy computationally more efficient

than discarding the old system and build it from scratch. This strategy also

provides further insights to the changes in the respective environment. But

there are several problems associated with this strategy:

a. The new data after change is rare. In this manner the data after the

change may not be sufficient to retrain the new learner precisely.

7

b. The time of change can't be predicted precisely, thus it is not known

with certainty, when to discard and retrain.

c. The drift can be sudden, gradual or reoccurring, thus the type of drift

can't be determined before retraining.

1.6 Research Problem Statement

We formulate the following problem statement:

 In the dynamic environments, the statistical properties of the target variable,

(which the model is trying to predict), change over time in unforeseen ways. This

causes the concept drift, which makes the predictions less accurate as time passes.

Concept drift detection is an important process of enhancing learning quality in

dynamic environments. We plan to build, develop and implement adaptive supervised

learning model that is able to handle concept drift using new adaptive training dataset

approach with using Early Drift Detection Method (EDDM). We aim to improve the

classification and prediction accuracy for the classification model that dropped by

time.

Our proposed solution will retrain the classification model if there are a number of

misclassified instances, which indicates an existence of concept drift. This implies a

reduction of un-needed updates. The proposed solution keeps old concepts that have

not changed with new examples, which leads not to lose useful knowledge lies in data.

In addition, our proposed solution will update the training dataset to represent the

current concept, which increases the accuracy of classification model. One of the other

technical goals is to keep the learning algorithm as effective, efficient and with little

parameterization.

1.7 Research Objectives

1.7.1 Main objective

The main objective of this research is to develop and implement an adaptive

approach to capture the concept drift using EDDM. The main target of the proposed

approach is to increase the classification accuracy which might drop down due to new

arrived concepts.

8

1.7.2 Specific objectives

 Build an effective approach to make training dataset adaptive for concept

drift.

 Find out a procedure to capture new concepts

 Implement the proposed model.

 Apply our proposed model on various domains with different drift types

and evaluate the results.

 Compare our proposed method with other existing methods.

1.8 Research Scope and Limitation

This research proposes a concept drift learner where adaptivity to changes in

training data over time is achieved by updating it with the new concepts and

considering the misclassified instances in the retrain model. The work is applied with

some limitations and assumption such as:

 Our work is limited for supervised learning with single class label.

 We assume that we receive a set of instances (batch learning).

 The algorithm does not consider noise and missed values, and therefore

requires that the dataset used has neither missing values nor noise data.

 Our work is limited to sudden, gradual and incremental concept drift.

1.9 Significance of the Thesis

 Add a significant contribution to scientific research in solving concept drift

research problem.

 Helping concerned people working in various domains that have concept

drift to obtain a better prediction for classification.

9

1.10 Research Methodology

In our research, we intend to build our solution through the following steps shown in

Figure 1.4.

1- Literature survey:

In this step, we will study the problem of concept drift including its types,

causes and how to solve it. This will be done based on literature survey that

study the previous related work and identify its drawbacks.

2- Data Collection:

Our proposed approach will synthetic data. The synthetic data will be generated

from Massive Online Analysis tool (MOA) or from its source in internet.

3- Design and develop the algorithm:

Based on the previous step, we will develop an algorithm that adapt the training

dataset and enhance the EDDM.

4- Implementation and coding:

Using WEKA and Java programming language, we will write the algorithm

code and implement it.

5- Conducting experiments:

After building the algorithm using java, we will conduct experiments to verify

the algorithm. This is done by running the code on selected datasets from

various domains that contain concept drifts.

Literature survey

Algorithm design

Algorithm implementation

Experiments

Data Collection

Evaluation & Comparison Study

Figure 1.4: Methodology Steps

10

6- Evaluation and comparison:

We will compare our approach with other existing solutions. We have three

goals to achieve from the experiments we conducted. The first goal for the

experiment is to prove that our proposed solution leads to higher classification

accuracy than the ordinary classifier (a classifier that does not consider concept

drift in its approach) accuracy. The second goal is to prove that our solution (in

general), works independently with any type of classification model, and the

third goal is to show that our approach out performs other approaches.

1.11 Outline of the Thesis

The thesis is organized as follows. Chapter 2 present some related works. Chapter

3 includes the methodology and model architecture. In Chapter 4, we present and

analyze our experimental results. Chapter 5 will draw the conclusion and summarize

the research achievement and future directions.

11

CHAPTER 2

Related Work

In this chapter, we give an overview to approaches related to the main topic of this

thesis. While the research area of concept drift has received significant attention in

recent years (most of the works is published in the last ten years), the field suffers from

a lack of standard terminology [29, 47]. There are different terminologies for concept

drift problem used from one research to another as we noticed, i.e the term "concept

shift" is used in some researches like [42, 47, 63], and some others use the term

"changing environments" like [4, 34, 61]. Other researches use the term "concept drift"

like [2, 19, 23, 29, 68]. Such inconsistent terminology is a disservice to the field as it

makes literature surveys difficult and complicate the discussion of this important

problem.

2.1 Context Surveys Of The Concept Drift Problem

Figure 2.1: A taxonomy of adaptive supervised learning techniques [68]

Žliobaitė [45] conducted a survey of concept drift problem. She introduced a

taxonomy for adaptive supervised techniques. This taxonomy describes in details the

12

main contributions on adaptive supervised learning techniques. Figure 2.1 describes

this taxonomy. From taxonomy, there are two types of contributions introduced:

1- Learners with triggers: determine how the models or sampling should be

changed at a given time.

2- Evolving learners: find ways to keep the base learner updated with every

change happen.

Another survey [25] in concept drift, presented a different taxonomy of methods

for concept drift adaptation. Authors in this survey organized their taxonomy into four

modules of adaptive learning algorithms as shown in Figure 2.2: memory, change

detection, learning and loss estimation. The main idea of presenting the adaptive

learning algorithms in modules is to see adaptive learning systems as consisting of

modular components, which can be permuted and combined with each other.

Figure 2.2: Four modules of adaptive learning systems with a taxonomy of

methods [25]

13

2.2 Concept Drift Handling Approaches

The early approaches for handling concept drift applied chunk based learning

where the new model is learned when a fixed sized dataset became available and

discard the previously model [28].

The most popular technique for handling concept drift is classifier ensemble [68].

In ensemble methods, classification outputs of several models are combined or

selected to get a final decision. The main processes included in such approach are

reading a stream of data as chunks, building classifiers, evaluate ensemble and

discarding models. The combination of classifiers results or selection rules are often

called fusion rules.

The SEA algorithm [57], is one of the first algorithms used to handle the concept

drift problem through the use of classifier ensemble learned from streaming data. The

classifiers are combined into a fixed size ensemble using a heuristic replacement

strategy. It trains a separate classifier on each sequential batch of training examples. A

trained classifier is added to the ensemble, while the worst performing classifier is

discarded. The final prediction is made using a simple majority voting

A work in [64] introduced a general framework for mining concept-drifting data

streams using weighted ensemble classifiers. An ensemble of predictive models like

C4.5, RIPPER and Naive Bayes are trained on sequential batches of a data stream.

Weighted voting is used to make the final prediction; the weights follow the expected

predictive accuracy of each model.

Dynamic Weighted Majority algorithm (DWM) uses adaptive ensemble based on

the Weighted Majority algorithm [43]. DWM can be used as a wrapper with any online

learning algorithm in time changing problems with unknown dynamics. Every

predictive model in the maintained ensemble has a weight. This weight is controlled

by a multiplicative constant β, where the models that misclassified the current example

are decreased by β. DWM dynamically generates all models by the same learning

algorithm on different sets of data and dynamically deletes experts in response to

changes in performance. To avoid creating an excessive number of models, DWM

removes poorly performing experts when their weight falls below a threshold.

14

Ensemble approach with instance weighting is another adaptive technique [9, 15,

36]. This strategy uses classifiers ensemble but the adaptivity is achieved not by

combination rules, but by systematic training set formation [68].

In the previous types of approaches, no drift detection mechanism is introduced.

Thus, no information is possessed about the dynamics of process generating data and

the adaptation method, such a case is called blind adaptation [25].

There are extensive number of researches use explicit change detection approach

[2, 7, 18, 23, 51, 52, 70]. Change detection aims to characterize and quantify concept

drift by identifying change points or small time intervals during which changes occur

[25]. Detection of concept drift can be established on different levels of learning

process. It can be based on monitoring raw data [39, 60], the classification error of the

used models [40, 46] or the parameters of learners [3].

To the best of our knowledge, the first algorithms capable of handling the problem

of concept drift were STAGGER [55], IB3 [5] and FLORA family [65].

Schlimmer and Granger [55], in 1986 introduced the problem of incremental

learning from noisy data and presented an adaptive learning system STAGGER, which

is a well-known pattern classification problem used to evaluate machine learning

systems that handle sudden changes [60]. Schlimmer and Granger are the authors of

the term "concept drift" [68]. The concept in STAGGER system consists a collection

of elements, where each individual element is a Boolean function of attributes-valued

pairs represented as a disjuncts of conjuncts. An example of a STAGGER concept

covering either green rectangles or red triangles is as follow:

(Shape = Rectangle and Color=Green) or (Shape = Triangle and Color=Red)

FLORA [65] algorithm family is considered as one of the first techniques used for

learning models in evolving environments. The first version of FLORA family uses a

fixed size sliding window, which stores the last examples in first-in-first-out (FIFO)

data structure. This window is used as examples feeder to build a new model at each

time step. Two main processes play a central role in the first FLORA algorithm, the

first is updating the model when new examples arrive, the second is forgetting

examples. When the size of the window is small, it can guarantee adaptation to fast

15

changes occurs in small periods of time, but during stable periods a too short window

degrades the performance of the system. A large window size gives a better

performance in long stable periods, but cannot realize close changes. Thus, the size

adjustments for examples window on the first FLORA version is a key challenge.

FLORA2 [65] is the second version of FLORA family, which maintains adaptive

window during the learning process. It uses a heuristic approach for adjusting the size

of the window known as WAH (Window Adjustment Heuristic). WAH depends on

performance measurements to detect concept changes such as accuracy and the

coverage of the current model. These measurements are monitored, and the window

size is adapted accordingly.

The posterior algorithm FLORA3, is the first adaptive learning technique for the

tasks where concepts may reoccur over time [25]. FLORA4 considers the noise in

detecting and handling the concept drift in data stream [65].

The heuristic approach for adjusting the size of the window in FLORA 2, WAH

suffers from two problems [29]. The first problem is the tuning of WAH parameters

that take many cycles to reach acceptable performance. The second problem with

WAH is the forgetting mechanism that uses age factor leading to significant loss of

useful knowledge lies in old data [64].

 Domingos, et al. [17], introduced Hoeffding trees as a learning method to

overcome problems associated with previous incremental learning algorithms. Authors

refer to their implementation as VFDT, an acronym for Very Fast Decision Tree.

Hoeffding tree algorithm represents the theoretical part of the solution while VFDT

algorithm represents the practical part that implements enhanced Hoeffding tree

algorithm. VFDT reads examples one by one for just one time and does not store any

example or parts in memory, it requires only a memory space that accommodates the

tree structure and sufficient statistics. VFDT again uses information gain as splitting

criteria. VFDT depends on the assumption that is, in order to find the best attribute to

split on a node, it is sufficient to consider a small subset of training examples that pass

through that node. The number of training examples is specified using Hoeffding

bound formula. These examples may be infinite which means that the procedure of

16

VFDT algorithm never terminates. This problem is solved using point-in-time a

parallel procedure that can use the current Hoeffding tree to make class classification.

 Hulten, et al. [33], introduced an extension to VFDT called Concept-adapting

Very Fast Decision Tree CVFDT. The new algorithm adds the ability to learn from

training examples, as time passes, their concepts change. CVFDT also store sufficient

statistics at each node to be able to decide which best test attribute should be located

at each decision node. CVFDT keeps the learning model updated with the new

concepts as the training examples arrive. This is done by continuously monitoring the

accuracy of old decision trees with respect to a sliding window of data from data

stream. If the algorithm detects a change in concept, it starts to build alternative tree,

which gradually its accuracy increases as new concept examples read. When the

accuracy of the old tree becomes lower than the alternative tree, CVFDT prunes the

old search tree and replace it with the alternative tree.

2.3 Concept Drift Detection Approaches

Drift detection methods in adaptive learning, can be based on different techniques

and algorithms. It depends mainly on two factors, the first is the type of concept drift

and the second is the nature of data if it is numeric, text or heterogeneous. Detection

concept drift, as shown in Figure 2.3, can be based on Sequential Analysis [35, 48,

49], Control Charts [23, 26, 44, 45, 54], Monitoring two distributions [1, 8, 22, 39, 51,

62, 63] or Contextual approaches [27, 41].

Figure 2.3: Taxonomy of Detection Methods [25]

Statistical Process Control (SPC) or Control Charts are statistical techniques used

to monitor and control product quality during a continuous manufacturing [25]. The

17

SPC can be used to monitor and control the probability of error for classification

process in streaming observations [68].

A work in [23], propose Drift Detection Method (DDM) which uses SPC as a

monitor technique to monitor model error rate. While monitoring the error, SPC

defines a warning and a drift levels. At the point when error exceeds the warning level,

the system enters warning mode and start to store the time,𝑡𝑤, of the corresponding

examples. If the error drops down below the warning level, the warning mode is

cancelled. However, if the error continues to increase reaching the drift level at time

𝑡𝑑, a significant change in the underlying distribution of examples is declared. The

classifier is retrained using only the examples since 𝑡𝑤 and the warning and drift levels

are reset.

To illustrate how SPC can be used in drift detection [21]:

Suppose a sequence of examples, in the form of pairs (𝑥𝑖, 𝑦𝑖). For Each example,

the actual model predicts 𝑐𝑘, that can be true (𝑦𝑖=𝑐𝑘) or false (𝑦𝑖≠𝑐𝑘). For a set of

examples the error is a random variable from Bernoulli trials. The binomial

distribution gives the general form of the probability for the random variable that

represents the number of errors in a sample of n examples. For each point i in the

sequence, the error-rate is the probability of observe False, 𝑝𝑖, with standard deviation

given by

𝑠𝑖 = √𝑝(1 − 𝑝)/𝑖 … . (2.1)

The authors of DDM assume that the error rate of the learning algorithm (𝑝𝑖) will

decrease while the number of examples increases if the distribution of the examples is

stationary. A significant increase in the error of the algorithm, suggests that the class

distribution is changing and, hence, the actual decision model is supposed to be

inappropriate. Thus, they store the values of pi and si when pi+si reaches its minimum

value during the process (obtaining pmin and smin). And it checks when the following

conditions triggers:

- 𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 2 𝑠𝑚𝑖𝑛 for the warning level. Beyond this level, the

examples are stored in anticipation of possible change context.

18

- 𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 3 𝑠𝑚𝑖𝑛 for drift level. Beyond this level the concept drift

is supposed to be true, and the model induced by learning method is reset and

a new model is learnt using the examples stored since the warning level

triggered. The values for 𝑝𝑚𝑖𝑛 and 𝑠𝑚𝑖𝑛 are reset too.

This approach has a good behavior detecting abrupt changes and gradual changes

when the gradual change is not very slow, but it has difficulties when the change is

slowly gradual [68]. In that case, the examples will be stored for long time, the drift

level can take too much time to trigger and the examples memory can be exceeded.

Another version of DDM called Early Drift Detection Method (EDDM) solved the

problem associated with DDM. EDDM is described in more details in chapter 3 [2].

Monitoring two distributions on two different time-windows is another technique

used to detect concept drift in data streams. This technique typically uses a fixed

reference window that summarizes the past information, and a sliding detection

window over the most recent examples [25]. The core idea is comparing two

distributions over two windows using statistical tests with the null hypothesis stating

that the distributions are equal. If the null hypothesis is rejected, a concept drift is

declared. One of the most popular works in monitoring two distributions is Adaptive

windowing algorithm (ADWIN) [7].

The problem of detection method based on monitoring two distributions as

compared with sequential analysis and control charts is memory requirements.

Hewahi and Kohail [29], introduced a new method called Adaptive Training Set

Formation for Delayed Labeling Algorithm (SFDL), which is based on selective

training set formation. Training set formation strategy considers reforming the training

sets when concept drift is detected. SFDL takes into account delayed labeling problem

and can be used with any base classifier without the need to change the implementation

or setting of the classifier. SFDL has some input setting parameters like number of

neighborhood k and number of most recent instances (wrecent) these parameters

should be determined previously. SFDL has been compared with Conceptual

Clustering and Prediction framework (CCP), Time Window and Weighted Examples

algorithms [37, 41, 65]. SFDL has shown better performance in identifying recurrence

drift and predict changes in user interest in Usenet dataset over time.

19

In previous works, some of the proposed solutions suffer from the following

drawbacks:

1- Inability to learn some concepts.

2- High number of parameterization variables that need to be tuned well to get

acceptable results.

3- Significant loss of useful knowledge lies in old data.

4- Less information about the dynamics of the process generates data.

5- Needing of high volume of data to reach reasonable level of performance.

We can conclude from the previous discussion of concept drift problem related

work that the adaptive learning solution should be:

1- Efficient and effective.

2- Has little parameterization as possible.

3- Respond to sudden, gradual and reoccurring concept drift.

4- Detect concept drift as quickly as possible and determine the source and the

point of concept drift.

5- Dynamically create new modules that provide consistent results with existing

models results as in case of using ensemble learning.

6- Get information about the dynamics of the process and generate data, to be able

to determine the type of drift.

20

CHAPTER 3

Methodology and the Proposed Model

In this chapter, we present a proposed solution for detecting concept drift and

dataset adaptation. We organize this chapter into two sections. Section 3.1 contains the

fundamentals used in our work. In Section 3.2, we present a general view of our

proposed algorithm and in Section 3.3; we describe the Concept Seeds Gathering and

Dataset Updating (CSG-DU) algorithm in details.

3.1 Fundamentals

Before going into the details of the proposed approach, we shall present some

important fundamentals and basic terminology that we used in our research:

3.1.1 Distance Functions

Since datasets used to test and validate our proposed solution contain discrete and

nominal data types, we will use two functions to compute distances between instances

during the solution. The first function is Euclidean distance function which is used as

similarity function that determines the degree of similarity between two instances that

have numeric attributes [32]. The Euclidean distance between two instances 𝑥𝑧 and 𝑥𝑙

where each instance is a q-dimensional real feature vector is computed as follows:

𝑑(𝑥𝑧, 𝑥𝑙) = √∑ |𝑥𝑧
(𝑖)

− 𝑥𝑙
(𝑖)

|2

𝑞

𝑖=1

… … … … … … … … (3.1)

where 𝑥𝑧
(𝑖)

 is the 𝑖𝑡ℎ feature of the instance 𝑥𝑧 and q is the dimensionality. For

nominal datasets, we use overlap distance function [12]. The overlap distance between

two instances 𝑥𝑧 and 𝑥𝑙 where each instance is a q-dimensional nominal feature vector

is computed as follows:

𝑑(𝑥𝑧 , 𝑥𝑙) =
∑ 𝑆(𝑥𝑧

(𝑖) 𝑞
𝑖=1 , 𝑥𝑙

(𝑖))

𝑛
 … … … . . … … … … . . (3.2)

Where 𝑆(𝑥𝑧
(𝑖)

 , 𝑥𝑙
(𝑖)

) = 0 when 𝑥𝑧
(𝑖)

≠ 𝑥𝑙
(𝑖)

 and 𝑆(𝑥𝑧
(𝑖)

 , 𝑥𝑙
(𝑖)

) = 1 when 𝑥𝑧
(𝑖)

= 𝑥𝑙
(𝑖)

 .

21

3.1.2 Statistical Process Control

Statistical Process Control (SPC) or Control Charts are statistical techniques used

to monitor and control product quality during a continuous manufacturing [25]. SPC

offers the ability to see if a procedure is stable over time, or, conversely, if it is

probable that the process has been influenced by special causes which disrupt the

procedure. Model learning process in data mining can be monitored through the use

of SPC. The most common method of SPC is to take samples at regular interval and

compute their mean, and then plot the samples mean on control charts that describes

some predefined mean levels.

Figure 3.1: SPC levels example [59]

 As shown in Figure 3.1, if the sample mean lies within the warning limits (as

point 1) the process is assumed to be on target. If it lies outside the action limits (as

point 2) the process is off target and the machine must be reset or other action taken,

if mean is between the warning and action limits (as point 3) this is a signal that the

process may be off target. In this case another sample is taken immediately. If the mean

is still outside the warning limits, action is taken. If however, the second sample mean

is within the warning limits, production is assumed to be on target.

22

3.2 The Proposed Approach – General Overview

A general overview of the proposed solution is described in Figure 3.2. The

proposed solution consists of two phases:

1) Initialization Phase: to generate an initial classification model from a training

dataset with labeled examples. This model will be used to classify data stream

instances to get instance predicted class and compare it with actual class.

2) Monitoring and updating phase: to monitor the model performance and

determine whether the current model is outdated and update it when needed. This

phase contains two main operations:

a. Concept Seeds Gathering: In this process, we aim to select the stream

instances that represent new concepts or concepts not learned by the current

model, and gather them in a pool. This pool is called updating pool and the

criterion used to select instances is described in next paragraphs.

b. Dataset and model updating: After filling the updating pool with instances,

we start to update instance labels in the training data using updating pool and

then retrain the classification model.

Figure 3.2: A general overview of the proposed solution as blocks

Initialization

Phase
Monitoring and updating phase

Time

(4) Testing new instances

(1) Build initial

Classification

Model

(2) Incorporate new instances (stream)

(3) Classify instances with current

model

(5) Add instances to updating pool

 (6) Update training data set

(7) Update current Model.

Concepts Seeds

Gathering

Dataset and

Model Updating

23

3.2.1 Early Drift Detection Method

Early Drift Detection Method (EDDM) has been developed to enhance the

detection in presence of gradual concept drift based on SPC [2]. At the same time, it

still has a good performance with abrupt concept drift. EDDM has been adopted in

our proposed system to detect the concept drift. The main idea of EDDM is to consider

the distance between two errors classification, not just to consider only the number of

errors. The average distance between two errors 𝑝𝑖
′ and its standard deviation 𝑠𝑖

′ are

calculated to set up the warning and drift levels. The values of 𝑝𝑖
′ and 𝑠𝑖

′ are stored

when 𝑝𝑖
′ + 2 ∗ 𝑠𝑖

′ reaches its maximum value (obtaining 𝑝𝑚𝑎𝑥
′ and 𝑠𝑚𝑎𝑥

′). Thus the

value of 𝑝𝑖
′ + 2 ∗ 𝑠𝑖

′ corresponds with the point where the distribution of distances

between errors is maximum [2]. EDDM defines two thresholds:

1- Warning level. Beyond this level, the examples are stored in advance of

possible concept drift. Equation 3.3 is used to compute the Warning level:

 (𝑝𝑖
′ + 2 ∗ 𝑠𝑖

′) /(𝑝𝑚𝑎𝑥
′ + 2 ∗ 𝑠𝑚𝑎𝑥

′) < 𝛼 ………………………… (3.3)

2- Drift level. Beyond this level, the concept drift is supposed to be true. The

model induced by the learning method is reset and a new model is learnt using

the examples stored since the warning level is triggered. The values of 𝑝𝑚𝑎𝑥
′

and 𝑠𝑚𝑎𝑥
′ are reset too. Equation 3.4 is used to compute the Drift level:

 (𝑝𝑖
′ + 2 ∗ 𝑠𝑖

′) /(𝑝𝑚𝑎𝑥
′ + 2 ∗ 𝑠𝑚𝑎𝑥

′) < 𝛽 ……………………….…(3.4)

For the experimental section, the values used for 𝛼 and 𝛽 have been set to 0.95

and 0.9 respectively. These values have been determined after some experimentations

in [2]. Figure 3.3 shows the pseudo code for EDDM algorithm.

24

Pseudo-code Early Drift Detection Method (EDDM)

1 Input: prediction (true, false)

2 𝛼, 𝛽 significant levels

3 Output: Alert (Warning, Drift)

4 Procedure:

5 Initialize (Every Batch Set): 𝑝𝑚𝑎𝑥 = 0, 𝑠𝑚𝑎𝑥 = 0, 𝑝 =1, 𝑠=1, 𝑛 = 0, 𝑞 = 0, 𝑟 = 0

6 𝑛=𝑛 + 1 // 𝑛 number of observations

7 If prediction= false

8 Set 𝑟 = 𝑟 + 1 // 𝑟 number of misclassified examples

9 Set 𝑝 = ((𝑟 − 1) ∗ 𝑝 + 𝑛)/𝑟 // average distance between two errors.

10 Set 𝑞 = ((𝑟 − 1) ∗ 𝑞 + 𝑛2)/𝑟

11 Set 𝑠 = √𝑞 − 𝑝2 // standard deviation

12 End if

13 If (𝑝 + 2 ∗ 𝑠) > (𝑝𝑚𝑎𝑥 + 2 ∗ 𝑠𝑚𝑎𝑥)

14 𝑝𝑚𝑎𝑥 = 𝑝
15 𝑠𝑚𝑎𝑥 = 𝑠
16 If 𝑛 >= 30 // 30 examples observed

17 If (𝑝𝑖
 + 2 ∗ 𝑠𝑖

) /(𝑝𝑚𝑎𝑥
 + 2 ∗ 𝑠𝑚𝑎𝑥

) < 𝛼 then

18 Alert = Warning

19 If (𝑝𝑖
 + 2 ∗ 𝑠𝑖

) /(𝑝𝑚𝑎𝑥
 + 2 ∗ 𝑠𝑚𝑎𝑥

) < 𝛽 then

20 Alert = Drift // concept drift occurred.

21 Return Alert

Figure 3.3: Pseudo-code Early Drift Detection Method (EDDM) [50]

25

Figure 3.4: Global view for concept drift learning scenario using the proposed approach

...

...

...

...

Add Instances to

Updating Pool Based on

Selection Criterion

EDDM Computation

X1 X2 X3 X4 X5 Xn

Y1 Y2 Y3 Y4 Y5 Yn

Xt1 Xt2 Updating

Pool

Xt3 Xt4 Xt5

Classification Model

Xtn

Yt1 Yt2 Yt3 Yt4 Yt6 Ytn

Training

Dataset

Read Data Stream as Batches

Updating the training dataset

2

3

5

4

6

Retrain

Classification

Model

Updated Model with

current Concepts

7

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5 Yn

Xn Classification

Model

1

Build Model Training

Dataset

Test if (𝑦𝑖≠𝑐𝑘)

Classifying Instances

Selection

Criterion

Data Stream Batch

Phase (1): Initialization

Phase (2): Monitoring and Updating

X’1 X’2 X’3 X’4 X’n

Y’1 Y’2 Y’3 Y’4 Y’5 Y’n

X’5

26

3.3 The Proposed Approach – Detailed Description

As shown in Figure 3.4, the input for the proposed approach is an initial training

set whereas the final output is a model that is very close to the current and recent

concepts of the data stream. Figure 3.8 describe the pseudo-code for Concept Seeds

Gathering and Dataset Updating Algorithm (CSG-DU). The detailed steps of the

proposed solution are:

1- Build initial classification model: We assume that the stream of data is collected

in batches of same sizes. The first step in our proposed solution is to create a model

from the first batch. This model is considered the base model used in classifying

examples in next batches and it will be retrained when needed according to testing

instances and selection step (described in step 4 and 5). The first batch set is

considered the base training dataset and it is saved and updated according to step

6. Figure 3.5 shows the initialization phase pseudo code.

Pseudo-code for building the initial classification model

1 Input: Training dataset D
2 Output: Classification Model, 𝐶𝐿𝑆
3 Procedure
4 Build the classification model 𝐶𝐿𝑆 using training dataset D
5 Return 𝐶𝐿𝑆

Figure 3.5: Initialization phase pseudo code

2- Incorporate new instances: In this step, we start to read instances one-by-one

from stream of instances collected as batches (other than the first).

3- Classify examples with current model: The current model classifies every

instance in the form of (𝑥𝑖, 𝑦𝑖) and predict its class 𝑐𝑘, where 𝑥𝑖 represents the

instance features, 𝑦𝑖 its label and 𝑐𝑘 is the predicted class.

4- Testing new instances: in this step, we compare every predicted 𝑐𝑘 class with

instance label 𝑦𝑖. If (𝑦𝑖≠𝑐𝑘), then the example is misclassified by the current model

and considered in computing the EDDM levels as shown in Figure 3.3 through

steps 7-11.

5- Add instances to updating pool (Instances Selection): After getting the

classification result of every instance in the stream batch, and computing EDDM

levels, we use selection criterion to fill the updating pool with instances that satisfy

27

the criterion. Instances in updating pool are used to update the training dataset.

The main objective of selection criterion is to select the most representative

instances that represent concepts that do not match with similar instances in the

building current model. The criterion used to select and put instances in updating

pool depend on the result of classifying the instance or/and the output of EDDM

algorithm. The selection criterion we use are shown in Figure 3.6.

Criterion If (Instance is misclassified OR EDDM=Warning OR

EDDM=Drift)

 Then >> put the current instance in updating pool.

Figure 3.6: Instances selection criterion to put them in updating pool

In the criterion , we consider the following case: If the current instance is

misclassified or the current EDDM output is Warning or Drift, then put the current

instance into updating pool. When the instance is misclassified, this means that

the classification model did not learn the instance concept, so we need to include

the misclassified instances and put it in the updating pool.

The number of instances in the updating pool represents its size, which is dynamic

and has value differs from a stream batch to another. At the time of start reading

stream batch, the updating pool is empty, and then, based on incorporating

instances and selection criterion we add instances to it. Thus, the updating pool

may take a size ranging from zero to n, where n is the size of stream batch. If at

the time of finish reading stream batch, the updating pool is still empty, this means

that there is no instance from the stream satisfy the criterion and this gives

indication that there is no concept drift, but if the number of instances in the

updating pool has value greater than 0, it means that there are instances satisfy the

criterion and concept drift might have occurred. When reading new stream batch,

the updating pool is cleared.

The steps 2 through 5 represent the process of Concept Seeds Gathering (CSG)

and it is repeated with every instance in the stream batch until the last one. Lines

8-17 in Figure 3.8 describe the CSG process.

6- Update the base training dataset: After filling the updating pool (no more

instances in the given batch satisfy the selection criterion), the dataset updating

28

process starts to update the base training dataset. The main objective for this step

is to update the training dataset with the new data stream concepts. At this step, we

have a training dataset that includes instances represent old concepts, and an

updating pool that includes instances representing new concepts. The training

dataset updating process works to change instances labels in the training dataset to

make these instances represent the new data stream concepts.

Figure 3.7 shows an example for training dataset updating. We have training

dataset that has three instances, (𝑋1, 𝐴), (𝑋2, 𝐵) and (𝑋3, 𝐶) and updating pool

that has three instances (𝑋′1, 𝐵), (𝑋′2, 𝐴) and (𝑋′3, 𝐷). The instances are in the

form of (𝑥 , 𝑦) where 𝑥 represents the instance feature and 𝑦 represents the class

label. Instance 𝑋1 is similar with 𝑋′1, and 𝑋2 is similar with 𝑋′2 but both have

different labels as shown in Figure 3.7(A). Instance 𝑋′3 has no similar instance in

the training dataset.

The dataset updating process works to make similar instances in the training

dataset and updating pool to have the same labels. As shown in Figure 3.7(B),

after updating process, the similar instances (𝑋1 with 𝑋′1 and 𝑋2 with 𝑋′2) have

the same label. In addition, the updating process works to add the instances from

Figure 3.7: Updating Training Dataset Example

29

updating pool that has no similar ones in training dataset to the dataset. As

depicted in Figure 3.7(B), we add the instance 𝑋′3 to the training dataset since it

has no similar instance in the training dataset. By this, we guarantee that any new

concept in updating pool will also be in the training dataset.

7- Retrain the model using the newly updated training dataset: The model in this

stage should be retrained using the newly updated training dataset and be ready to

read the next batch going to step two.

Steps 6 and 7 represent the process of Dataset Updating (DU). The DU process is

repeated every time a new batch is arriving and in a case we have an updating pool.

Lines 18-27 in Figure 3.8 describe the DU process.

Pseudo-code for Concept Seeds Gathering and Dataset Updating Algorithm

(CSG-DU)

1 Input: A classification model, 𝐶𝐿𝑆
2 Training dataset D
3 Batch B of labeled Instances of form (𝑥𝑖 , 𝑦𝑖)
4 Output: 𝐶𝐿𝑆

′: updated classification model based on the current concepts
5 Procedure:

6 Initialize EDDM parameters

7 /* CSG Process */

8 For every instance in B

9 𝑐𝑘 = 𝐶𝐿𝑆 (𝑥𝑖) (classify current instance and get predicted class 𝑐𝑘)

10 If 𝑦𝑖 <> 𝑐𝑘

11 Compute EDDM(prediction = False)

12 else

13 Compute EDDM(prediction = True)

14 /*Criterion used to select instances to updating pool */

15 /* Criterion */

16 If (prediction = False || EDDM-Alert = Warning || EDDM-Alert = Drift)

17 Add the current instance to the updating pool, pool[]

18 /* DU Process */

19 For each instance (𝑥𝑖 , 𝑦𝑖) in pool[]

20 For each instance (𝑥𝑗 , 𝑦𝑗) in D

21 Compute similarity 𝑑(𝑥𝑖 , 𝑥𝑗) using equation 3.1 or 3.2

22 If 𝑑(𝑥𝑖 , 𝑥𝑗) < 0.2 (for numeric) or 𝑑(𝑥𝑖 , 𝑥𝑗) = 1 (for nominal)

23 Set 𝑦𝑗 = 𝑦𝑖

24 Else

25 Add (𝑥𝑖, 𝑦𝑖) to D

26 Rebuild 𝐶𝐿𝑆
 using training dataset D

27 Return 𝐶𝐿𝑆

Figure 3.8: Pseudo-code for Concept Seeds Gathering and Dataset Updating

Algorithm (CSG-DU)

30

CHAPTER 4

Experimental Results and Evaluation

In this chapter, we discuss the experiments carried out to evaluate our proposed

solution. The chapter is organized into three sections: Section 4.1 describes the datasets

used in our experiments and gives insight into the main characteristics of each dataset.

Section 4.2 briefly describes the experimental environment and states the

programming language and tools used to develop the proposed system. Finally, in

Sections 4.3 we present and discuss experimental results.

4.1 Datasets

The research field for data stream mining, face the problem of the lake availability

of standard concept drift benchmark datasets [6, 29]. Most of the current concept drift

used datasets are not suitable for evaluating data stream classification algorithms. In

addition, these datasets suffer from the low number of examples, which do not show

reasonable concept drift behavior. To overcome this problem, it has become a common

practice for researchers in this field, to evaluate proposed solutions based on both real

world and synthetic datasets.

Similarly, to evaluate our proposed solution, we used both real world and synthetic

datasets that represent different concept drift types with different speed of change.

They include no missing or noise and all of them are generated using Massive Online

Analysis tool (MOA). Table 4.1 illustrates the characteristics of each set. A short

description of each dataset is given below.

31

Table 4.1: Characteristics of the used datasets

Name Size

:# of

instances

Dimens

ionality

Classes Type of

dataset

Drift type Number

of

batches

STAGGER 150, 000 3 2 Artificial Sudden 3

SEA 10, 000 3 2 Artificial Sudden 4

Hyperplane 5000 10 2 Artificial Incremental 5

Credit 50, 000 9 2 Real Gradual 10

Wave 45,000 21 3 Artificial Gradual 9

Stagger Dataset

The concept drift in STAGGER [55], dataset is a sudden concept drift. Each

instance in STAGGER dataset has three feature attributes: size ∈ [small, medium,

large], color ∈ [red, green, blue] and shape ∈ [square, circular, triangular]. The

dataset is generated by creating instances where each feature value is randomly

selected from one of the allowed values, e.g. [small, blue, square]. Based on specific

concept rules, the dataset instances are assigned to their classes, for example,

instances with the features size = small and color = red are assigned to one class while

all other instances are assigned to the other class. Concept drift is introduced by

changing the concept rules over time. In our experiment, the STAGGER dataset is

partitioned into 3 batches, every batch contains 27 different concept rules. For

example, in batch 1 and 2, we have the following concept:

(Medium, Red, Triangular) > False

The concept is suddenly changed in batch 3 for the following:

(Medium, Red, Triangular) > True

32

SEA Dataset

In our experiment, we used the SEA dataset, which is a benchmark dataset for

sudden concept drift [43, 57]. The dataset has three attributes, and every attribute takes

a random value ranging from 0 to 10. Only the first two attributes are relevant. The

target concept is 𝑦 where 𝑦 = [𝑥1 + 𝑥2 ≤ θ]. Each example belongs to class 1 if it

satisfies 𝑦 and class 0 otherwise. We used four batches that represent four concepts

where θ = 8, 9, 7, and 9.5 in every batch respectively.

Hyperplane Dataset

Hyperplane dataset is used for incremental concept drift. It was used for the first

time in [34] to test CVFDT versus VFDT. A Hyperplane in d-dimensional space is the

set of points 𝑥 that satisfy:

∑ 𝑤𝑖𝑥𝑖 = 𝑤0 = ∑ 𝑤𝑖

𝑑

𝑖=1

… … … … … … … … … . (4.1)

𝑑

𝑖=1

Where 𝑥𝑖, is the ith coordinate of 𝑥 . Examples for which ∑ 𝑤𝑖𝑥𝑖 ≥ 𝑤0
𝑑
𝑖=1 labeled

positive, and examples for which ∑ 𝑤𝑖𝑥𝑖 < 𝑤0
𝑑
𝑖=1 are labeled negative. Hyperplanes

are useful for simulating time-changing concepts, because we can change the

orientation and position of the hyperplane in a smooth manner by changing the relative

size of the weights. We introduce change to this dataset adding drift to each weight

attribute 𝑤𝑖 = 𝑤𝑖 + 𝑑𝜎 where 𝜎 is the probability that the direction of change is

reversed and 𝑑 is the change applied to every example. In our experiments, we

configured 𝑑 and 𝜎 to have the values 0.1 and 10% respectively.

Credit Dataset

Credit dataset is used for gradual concept drift. Credit dataset represents a stream

containing nine attributes, six numeric and three categorical. Although not explicitly

stated by the authors, a sensible conclusion is that these attributes describe hypothetical

loan applications [10]. There are ten functions (every function is represented in a

batch) defined for generating binary class labels from the attributes. Presumably, these

determine whether the loan should be approved or not.

33

Wave (Wave21)

This dataset represents gradual concept drift dataset and used by Gama et al [13,

24]. It consists of a stream with three decision classes where the instances are described

by 21 attributes. The goal of the task is to differentiate between three different classes

of waveform, each of which is generated from a combination of two or three base

waves.

4.2 Experiments Setup

In this section, we describe the setting and configuration of experiments for

evaluating our proposed approach. First, we describe the experimental environment

where the experiments took place and the tools used to carry out our experiments.

Then, we describe in details the experiment steps and its procedure.

4.2.1 Experimental Environment

We implemented the experiments on a machine with an Intel(R) Core(TM) i7-

3632QM CPU @ 2.20GHz and 12 GB of RAM. We implemented the algorithm code

using Java programming with integrated JDK (Java Development Kit) 1.6.

4.2.2 Tools

To carry out our experiments, we used the following tool list:

1- Weka (Waikato Environment for Knowledge Analysis): is a popular suite

of machine learning software written in Java, developed at the University of

Waikato, New Zealand. Weka is free software available under the GNU

General Public License [31]. We used weka as a frame work to build our

proposed solution.

2- MOA (Massive Online Analysis): is a framework for data stream mining. It

includes tools for evaluation and a collection of machine learning algorithms.

We used MOA to generate the datasets that have concept drift.

3- Eclipse: is an integrated development environment (IDE). It contains a

base workspace and an extensible plug-in system for customizing the

environment. Written mostly in Java, Eclipse can be used to develop

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/New_Zealand
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Workspace
http://en.wikipedia.org/wiki/Plug-in_(computing)
http://en.wikipedia.org/wiki/Java_(programming_language)

34

applications. We used Eclipse software to code, implement, test and validate

our proposed solution.

4- Microsoft Excel: we use excel to partition, organize and store datasets in tables,

do some simple preprocessing and analyze the results.

4.2.3 Experiment Procedure

We execute the following experiment procedure to observe the model performance

as target concepts change from batch to batch:

1- We start by generating datasets using MOA tool. The dataset is generated as

smaller subsets, which we call each one as a batch. We insure that every dataset

batch represents a change by configuring MOA parameters when doing dataset

generation.

2- We select a classification algorithm from one of the three classifiers listed in

Table 4.2 as learning model to test our proposed solution. The three algorithms

are chosen as a test case and we can use other algorithms to work within the

proposed solution. For k-nearest algorithm, we select k=3 as default value since

SFDL algorithm used the same value. More background about the used

classifiers is described in the next 4.2.4 subsection.

Table 4.2: Classifiers models used in experiments

Algorithm Weka class

1 Decision Tree C4.5 weka.classifiers.j48.J48

2 Naïve Bayes weka.classifiers.NaiveBayes

3 k-nearest neighbor weka.classifiers.IBk

3- The first batch for every dataset is the training set and used to build the initial

classification model. After creation of the classifier, we start to read the other

batches sequentially and run our algorithm on them, the procedure explained

previously in chapter 3.

4- We measure the accuracy at two points after passing each batch: (1) before

training set adaptation using the last updated dataset (2) after retraining the

model after injecting the misclassified instances in the last updated dataset.

35

5- The accuracy of the model is calculated using the following equation:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
number of instances correctly classified

𝑛
 × 100 … . . (4.2)

4.2.4 Used Classifiers

Decision Tree C4.5: This algorithm generates a decision tree for classification

from a given dataset by recursive partitioning of data. C4.5 is extension of the basic

ID3 algorithm to address ID3 drawbacks and problems. The decision is grown using

Depth-First strategy. The algorithm considers all the possible tests that can split the

data set and selects a test that gives the best information gain. At each node of the tree,

C4.5 chooses the attribute of the data that most effectively splits its set of samples into

subsets enriched in one class or the other. The attribute with the highest normalized

information gain is chosen to make the decision. The C4.5 algorithm then recurs on

the smaller sublists.

Naïve Bayes: The Naïve Bayesian classifier is based on Bayes theorem and it is

easy to build, with no complicated iterative parameter estimation or recursive process

which makes it particularly useful for very large datasets. Despite its simplicity, the

Naive Bayesian classifier is widely used because it often outperforms more

sophisticated classification methods. Bayes theorem provides a way of calculating the

posterior probability, P(y|x), from P(y), P(x), and P(x|y). Naive Bayes classifier

assume that the effect of the value of a predictor (x) on a given class (y) is independent

of the values of other predictors. This assumption is called class conditional

independence:

𝑝(𝑦|𝑋)=
𝑝(𝑦)𝑝(𝑋|𝑦)

𝑝(𝑋)
… … … … … … … … (4.3)

 P(y|x) is the posterior probability of class (target) given predictor (attribute).

 P(y) is the prior probability of class.

 P(x|y) is the likelihood which is the probability of predictor given class.

 P(x) is the prior probability of predictor.

K-nearest neighbor: K nearest neighbors is a simple algorithm that stores all

available cases and classifies new cases based on a similarity measure like distance

36

functions. KNN has been used in statistical estimation and pattern recognition already

in the beginning of 1970’s as a non-parametric technique. An instance is classified by

a majority vote of its neighbors, with the case being assigned to the class most common

amongst its K nearest neighbors measured by a distance function. If K = 1, then the

case is simply assigned to the class of its nearest neighbor.

4.3 Experimental Results and Discussion

According to the types of concept drift we consider in this research and explained

in chapter 1, we divided the results into three groups. First, in section 4.3.1 we analyze

the CSG-DU algorithm's accuracy with sudden drift. In section 4.3.2, we analyze the

CSG-DU algorithm's accuracy with gradual drift and in section 4.3.3, we analyze the

results with incremental drift.

4.3.1 Sudden Drift Experiments (STAGGER and SEA datasets)

The sudden drift occurs when a new concept completely replace an old one. The

STAGGER and SEA datasets are considered benchmarking concept drift datasets. The

STAGGER dataset is partitioned into three batches and each batch contains 27

concepts that are changed suddenly. For SEA dataset we use the first concept where θ

= 7 as to build the initial learner, and concepts where θ = 8, 8.5, 9 as batch1, batch2

and batch3 respectively. All attributes values in STAGGER dataset are nominal, thus,

we used equation 3.2 in line 29 in Figure 3.8 as similarity function to compute the

similarity between instances. On the contrary, all attributes values in SEA dataset are

discrete, so, we used equation 3.1 as similarity function to compute the similarity

between instances. For getting most accurate results and after some experiments, we

used similarity degree of 0.2 as shown in Figure 3.8 line 22.

37

Table 4.3: Results of STAGGER dataset

Dataset Model Batches Ordinary CSG-DU

STAGGER

Decision

Tree

Batch 1 40.8% 100%

Batch 2 51.6% 100%

Average 46.2% 100%

Naïve Bayes

Batch 1 40.8% 100%

Batch 2 51.6% 100%

Average 46.2% 100%

k-nearest

k=3

Batch 1 40.8% 100%

 Batch 2 51.6% 100%

 Average 46.2% 100%

For STAGGER dataset, after building the initial classification model, we passed

batch 1 and recorded the classification accuracy, which was 40.8% for all the used

models as shown in Table 4.3. This confirms the existence of concept drift between

the training set and batch 1, where the current model could not classify the new concept

correctly. Then, we applied our algorithm over the training set and retrained the current

model. After this, we got 100% classification accuracy for all the used models.

After the arrival of batch 2, we classify its instances using the used classification

models (after first retraining). Note that the accuracy decreased to 51.6%. This

happened because retraining makes the model adapted according to data in batch 1,

which is different from batch 2.

The obtained 100% accuracy with CSG-DU algorithm for all models could have

happened because of the two following reasons:

1- The STAGGER dataset has 0% noise and it is full nominal data type.

2- The 27 concepts in the dataset are represented with a big number of instances

(50,000 instances for each batch) which makes the learning process accurate.

Figure 4.1 presents the curves of accuracy over batches arrival using CSG-DU

algorithm and ordinary classifier for STAGGER dataset. It is obvious that CSG-DU

outperforms the ordinary models in the accuracy.

38

Figure 4.1: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (STAGGER dataset)

Table 4.4: Results of SEA dataset

Dataset Models Batches Ordinary CSG-DU

Sea

Decision Tree

Batch 1 91.16% 91.6%

Batch 2 91.44% 93.44%

Batch 3 85.76% 88.4%

Average 89.45% 91.15%

Naïve Bayes

Batch 1 85.8% 90.32%

Batch 2 93.12% 94.92%

Batch3 83.4% 86.6%

Average 87.44% 90.61%

k-nearest

k=3

Batch 1 91.16% 92.2%

Batch 2 89.88% 93%

Batch 3 85.56% 89.2%

 Average 88.87% 91.47%

For SEA dataset, in contrary of STAGGER dataset, the classification models gave

different results for ordinary models and CSG-DU. The lowest average of accuracy for

the ordinary classification model is Naïve Bayes with average 87.44% and the best one

is Decision Tree with average 89.45%. After applying CSG-DU algorithm, all the used

models show better classification accuracy than if we use the ordinary one. The lowest

0

20

40

60

80

100

B A T C H 1 B A T C H 2

A
C

C
U

R
A

C
Y

%

STAGGER DATASET
DECISION TREE, NAÏVE BAYES AND

K-NEAREST

Ordinary CSG-DU

39

average of accuracy for CSG-DU model is Naïve Bayes with average 90.61% and the

best is k-nearest with average 91.47%.

Figures 4.2, 4.3 and 4.4 present the curves of accuracy over batches arrival using

CSG-DU algorithm and ordinary classifier for SEA dataset. It is notable that CSG-DU

algorithm achieves better performance than the ordinary classifiers.

Figure 4.2: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (SEA dataset – Decision Tree)

Figure 4.3: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (SEA dataset – Naïve Bayes)

80

100

B A T C H 1 B A T C H 2 B A T C H 3

A
C

C
U

R
A

C
Y

%

SEA DATASET
DECISION TREE

Ordinary CSG-DU

60

80

100

B A T C H 1 B A T C H 2 B A T C H 3

A
C

C
U

R
A

C
Y

%

SEA DATASET
NAÏVE BAYES

Ordinary CSG-DU

40

Figure 4.4: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (SEA dataset – k-nearest)

Table 4.5, presents a comparative study between CSG-DU algorithm and SFDL

algorithm introduced in [29] for STAGGER, SEA datasets. It is notable that CSG-DU

performs better than SFDL. The only case where SFDL outperforms the CSG-DU is

in batch 3 with SEA dataset, the difference is minor.

Table 4.5: Comparative study between SFDL and CSG-DU

Dataset Batches SFDL CSG-DU

STAGGER
Batch 1 90% 100%

Batch 2 65.85% 100%

SEA

Batch 1 86.0% 91.6%

Batch 2 89.5% 93.44%

Batch 3 89.0% 88.4%

4.3.2 Gradual Drift Experiments (Wave and Credit datasets)

Gradual concept drift happens when there are two concepts online and as time

passes, the strength of one of them decreases and the other increases. Table 4.6 and

Table 4.7 show the results for Wave and Credit datasets respectively. The Wave

dataset consists of 9 batches where the first batch used to build the first classification

model and then the coming batches are being read one by one.

0

20

40

60

80

100

B A T C H 1 B A T C H 2 B A T C H 3

A
C

C
U

R
A

C
Y

%

SEA DATASET
K-NEAREST , K=3

Ordinary CSG-DU

41

Table 4.6: Results of Wave dataset

Dataset Models Batches Ordinary CSG-DU

Wave

Decision Tree

Batch 1 81.56% 86.86%

Batch 2 83.16% 89.2%

Batch 3 76.44% 90.5%

Batch 4 77.86% 84.86%

Batch 5 61.04% 94.4%

Batch 6 71.98% 87.62%

Batch 7 60.86% 82.68%

Batch 8 59.88% 84.7%

Average 71.6% 87.6%

Naïve Bayes

Batch 1 80.4% 80.98%

Batch 2 72.54% 80.88%

Batch 3 76.98% 77.9%

Batch 4 75.22% 80.02%

Batch 5 59.8% 62.72%

Batch 6 52.3% 63%

Batch 7 55.42% 56.82%

Batch 8 55.14% 56.08%

Average 65.98% 69.8%

k-nearest

k=3

Batch 1 88.28% 87.4%

Batch 2 83.54% 84.84%

Batch 3 81.02% 89.26%

Batch 4 83.92% 86.72%

Batch 5 72.6% 90.12%

Batch 6 73.36% 87.5%

Batch 7 71.96% 84.42%

Batch 8 74.54% 78.04%

 Average 78.65% 86.04%

For the Wave dataset, the lowest average of accuracy for the ordinary

classification model is Naïve Bayes with average 65.98% and the best one is k-nearest

with average 78.65%. After applying CSG-DU algorithm, all the used models show

better classification accuracy. The lowest average of accuracy for CSG-DU model is

Naïve Bayes with average 69.8% and the best Decision Tree with average 87.6%. All

results for Wave dataset shown in Table 4.6 gives clear indication that CSG-DU

algorithm shows high classification accuracy with the occurrence of gradual concept

drift.

42

Figures 4.5, 4.6 and 4.7 present the curves of accuracy over batches arrival using

CSG-DU algorithm and ordinary classifier for Wave dataset.

Figure 4.5: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (Wave dataset – Decision Tree)

Figure 4.6: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (Wave dataset – Naïve Bayes)

0

20

40

60

80

100

B A T C H 1 B A T C H 2 B A T C H 3 B A T C H 4 B A T C H 5 B A T C H 6 B A T C H 7 B A T C H 8

A
C

C
U

R
A

C
Y

%

WAVE DATASET
DECISION TREE

Ordinary CSG-DU

0

20

40

60

80

100

B A T C H 1 B A T C H 2 B A T C H 3 B A T C H 4 B A T C H 5 B A T C H 6 B A T C H 7 B A T C H 8

A
C

C
U

R
A

C
Y

%

WAVE DATASET
NAÏVE BAYES

Ordinary CSG-DU

43

Figure 4.7: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (Wave dataset – k-nearest)

0

20

40

60

80

100

B A T C H 1 B A T C H 2 B A T C H 3 B A T C H 4 B A T C H 5 B A T C H 6 B A T C H 7 B A T C H 8

A
C

C
U

R
A

C
Y

%

WAVE DATASET
K-NEAREST , K=3

Ordinary CSG-DU

44

Table 4.7: Results of Credit dataset

Dataset Models Batches Ordinary CSG-DU

Credit

Decision Tree

Batch 1 45.74% 90.22%

Batch 2 49.3% 97.04%

Batch 3 48.48% 94.18%

Batch 4 50.94% 89.12%

Batch 5 46.92% 91.1%

Batch 6 42.78% 95.06%

Batch 7 48.48% 99.06%

Batch 8 50.2% 95.34%

Batch 9 48.56% 99.76%

Average 47.93% 94.54%

Naïve Bayes

Batch 1 43.5% 65.08%

Batch 2 48.04% 69.94%

Batch 3 46.7% 66.04%

Batch 4 52.56% 63.22%

Batch 5 47.58% 69.74%

Batch 6 44.54% 88.82%

Batch 7 49.36% 94.52%

Batch 8 48.86% 87.64%

Batch 9 48.66% 95%

Average 47.76% 77.78%

k-nearest

k=3

Batch 1 45.72% 79.68%

Batch 2 47.4% 87.18%

Batch 3 48.26% 80.76%

Batch 4 52.6% 79.62%

Batch 5 51.54% 78.5%

Batch 6 45.06% 81.62%

Batch 7 51.52% 98.4%

Batch 8 49.14% 85.88%

 Batch 9 47.3% 99.74%

 Average 48.73% 85.71%

The credit dataset has 10 batches represent 10 different concepts. The first batch

is used to build the first classification model and then, we start to read batches one by

one. It is notable from Table 4.7 that the ordinary classification model gave a very low

classification accuracy, which means that there is a wide difference from batch to batch

in the concepts they have. The lowest average of accuracy for the ordinary

classification model is Naïve Bayes with average 47.76% and the best one is k-nearest

with average 48.73%.

45

 After applying CSG-DU algorithm, all the used models show better classification

accuracy than if we used the ordinary one. The lowest average of accuracy for CSG-

DU model is Naïve Bayes with average 77.78% and the best is the Decision Tree with

average 94.54%. All results for Credit datasets shown in Table 4.7 gives clear

indication that CSG-DU algorithm shows high classification accuracy with the

occurrence of gradual concept drift. Figures 4.8, 4.9 and 4.10 present the curves of

accuracy over batches arrival using CSG-DU algorithm and ordinary classifier for

Credit dataset.

Figure 4.8: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (Credit dataset – Decision Tree)

0

20

40

60

80

100

B A T C H
1

B A T C H
2

B A T C H
3

B A T C H
4

B A T C H
5

B A T C H
6

B A T C H
7

B A T C H
8

B A T C H
9

A
C

C
U

R
A

C
Y

%

CREDIT DATASET
DECISION TREE

Ordinary CSG-DU

46

Figure 4.9: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (Credit dataset – Naïve Bayes)

Figure 4.10: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (Credit dataset – k-nearest)

Table 4.8, presents a comparative study between CSG-DU algorithm and SFDL

algorithm introduced in [29] for Credit dataset. It is also notable that CSG-DU

performs better than SFDL.

0

20

40

60

80

100

B A T C H
1

B A T C H
2

B A T C H
3

B A T C H
4

B A T C H
5

B A T C H
6

B A T C H
7

B A T C H
8

B A T C H
9

A
C

C
U

R
A

C
Y

%

CREDIT DATASET
NAÏVE BAYES

Ordinary CSG-DU

0

20

40

60

80

100

B A T C H
1

B A T C H
2

B A T C H
3

B A T C H
4

B A T C H
5

B A T C H
6

B A T C H
7

B A T C H
8

B A T C H
9

A
C

C
U

R
A

C
Y

%

CREDIT DATASET
K-NEAREST , K=3

Ordinary CSG-DU

47

Table 4.8: Comparative study between SFDL and CSG-DU for Credit

dataset

Dataset Batches SFDL CSG-DU

Credit

Batch 1 83% 90.22%

Batch 2 76% 97.04%

Batch 3 79% 94.18%

Batch 4 76% 89.12%

Batch 5 79% 91.1%

Batch 6 77% 95.06%

4.3.3 Incremental Drift Experiments (Hyperplane dataset)

Hyperplane dataset is a popular concept drift dataset used in many experiments

[19, 64, 69]. Hyperplane dataset is incremental concept drift dataset [14]. Incremental

drift is considered as a gradual drift but with more than two sources [68]. The

difference between sources in incremental drift is very small, thus, it is very difficult

to predict and learn. The drift can be noticed only when looking to longer time period.

Table 4.9 shows the recorded results of ordinary classification model and CSG-DU

model when applied to hyperplane dataset.

Table 4.9: Results of Hyperplane dataset

Dataset Models Batches Ordinary CSG-DU

Hyperplane

Decision Tree

Batch 1 42.1% 48.3%

Batch 2 21% 89.6%

Batch 3 90.5% 92%

Batch 4 87.5% 92.2%

Average 60.28% 80.53%

Naïve Bayes

Batch 1 41% 50.4%

Batch 2 19.1% 86.9%

Batch 3 93% 95.5%

Batch 4 88.4% 88.1%

Average 60.38% 80.23%

k-nearest

k=3

Batch 1 47.2% 53.3%

Batch 2 31.5% 72.5%

Batch 3 60.7% 83.1%

Batch 4 76.8% 88.1%

Average 54.05% 74.25%

48

At the arrival of the first batch, the ordinary classification models show low

performance accuracy less than 47.2%. After applying CSG-DU algorithm at batch 1,

the accuracy is increased but still has low value. At the arrival of batches 2, the

ordinary classification models still have low accuracy, 21% for decision tree, 19.1%

for Naïve Bayes and 31.5% for k-nearest. After applying CSG-DU on batch 2, it is

notable that the accuracy increased to acceptable levels, 89.6% for decision tree, 86.9%

for Naïve Bayes and 72.5% for k-nearest. After arrival of batch 3 and batch4, the

accuracy of ordinary and CSG-DU models increased, but CSG-DU still has better

average accuracy as noted in Table 4.9.

Figures 4.11, 4.12 and 4.13 present the curves of accuracy over batches arrival

using CSG-DU algorithm and ordinary classifier for Hyperplane dataset.

Figure 4.11: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (Hyperplane dataset – Decision Tree)

0

20

40

60

80

100

B A T C H 1 B A T C H 2 B A T C H 3 B A T C H 4

A
C

C
U

R
A

C
Y

%

HYPERPLANE DATASET
DECISION TREE

Ordinary CSG-DU

49

Figure 4.12: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (Hyperplane dataset – Naïve Bayes)

Figure 4.13: Accuracy over batches arrival for CSG-DU algorithm and ordinary

classifier (Hyperplane dataset – k-nearest)

0

20

40

60

80

100

120

B A T C H 1 B A T C H 2 B A T C H 3 B A T C H 4

A
C

C
U

R
A

C
Y

%

HYPERPLANE DATASET
NAÏVE BAYES

Ordinary CSG-DU

0

20

40

60

80

100

B A T C H 1 B A T C H 2 B A T C H 3 B A T C H 4

A
C

C
U

R
A

C
Y

%

HYPERPLANE DATASET
K-NEAREST , K=3

Ordinary CSG-DU

50

4.4 Results and Discussion Summary

In the previous sections, we discussed the results of experiments conducted for our

proposed solution. Roughly, we can conclude that, CSG-DU algorithm presents to be

more accurate than the ordinary classification and SFDL algorithm in handling

different types of concept drift. For handling the sudden drift, our proposed solution

outperforms the ordinary classification and SFDL algorithm and we got 100%

accuracy for stagger dataset and 91.47% for SEA dataset. For gradual concept drift,

our solution gave high classification accuracy results when using Decision Tree and

k-nearest 87.6% and 86.04% for Wave dataset respectively. For Credit dataset the

accuracy still has high accuracy values when using Decision Tree and k-nearest

94.54% and 85.71% respectively. The same behavior still appears in dealing with

incremental concept drift, so, in Hyperplane dataset, our proposed solution

outperforms the ordinary classification.

Table 4.10 summaries all results for experiments conducted in the research and

compares the average accuracy between Ordinary classification results and CSG-DU

results.

Table 4.10: Summary of Results

Models Dataset Ordinary CSG-DU

Decision

Tree

STAGGER 46.2% 100%

SEA 89.45% 91.15%

Wave 71.6% 87.6%

Credit 47.93% 94.54%

Hyperplane 60.28% 80.53%

Naïve Bayes

STAGGER 46.2% 100%

SEA 87.44% 90.61%

Wave 65.98% 69.8%

Credit 47.76% 77.78%

Hyperplane 60.38% 80.23%

k-nearest

k=3

STAGGER 46.2% 100%

SEA 88.87% 91.47%

Wave 78.65% 86.04%

Credit 48.73% 85.71%

Hyperplane 54.05% 74.25%

51

CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we addressed the problem of supervised learning over time when

the data is changing (concept drift). We defined the main characteristics of concept

drift and discussed its different types. We reviewed related topics and existing

strategies that work to solve the problem of concept drift. Our research introduces a

new method for solving the problem of concept drift by making the training dataset

adaptive to changes.

We proposed a training set adaptation algorithm called CSG-DU, which leads to

acceptable performance for learning models under the existence of concept drift. CSG-

DU can be used with any type of classification models and has no parameters to be

configured.

CSG-DU algorithm includes two main processes: the first is initialization Phase,

which aims to generate an initial classification model from a training dataset with

labeled examples. The second is monitoring and updating phase, which aims to

monitor the model performance and determine whether the current model is outdated

and update it when needed.

The proposed approach has been tested using synthetic and real datasets. The

datasets represent various domains and have different drift types (sudden, gradual, and

incremental) with different speed of change. Experimental evaluation shows better

classification accuracy as compared to ordinary classifier for all drift types. The

average classification accuracy for our proposed solution has not been worse than the

ordinary classifiers in any case.

Finally, we conducted a comparative study between our proposed method and

SFDL method to identify sudden drift and gradual drift. The results show the

superiority of our solution over SFDL in handling sudden and gradual drift capturing

the fast and slow changes.

52

5.2 Future work

Future research will be directed in the following direction:

1- Carry out additional experiments to analyze the behavior of concept drift and

discover how concept drift occurs. This well help to configure the solution to

work when there is no pre-knowledge of the type of drift.

2- In our algorithm, the stream is processed as chunk of batches with same sizes

and known number of batches. It is better to make it work with a direct

continuous stream of instances.

3- Extending our algorithm so it can add or remove classes. This is important

where in some domains, there are classes that disappear by time and must be

removed or vice versa.

4- Our algorithm does not consider missed values nor noisy data, so adding

strategy for dealing with noise and missing values will enhance the solution

and make it valid to be applied in practical environments.

5- Exploring some ideas to enhance the proposed strategy to improve the results

accuracy. A very high classification accuracy can be obtained if we build a

customized version to deal with each drift individually.

53

References

[1] Bach S. H. and Maloof M. "Paired Learners for Concept Drift". In Proceedings of the Data

Mining, 2008. ICDM '08. Eighth IEEE International Conference on. 23-32, 2008.

[2] Baena-Garca M., del Campo-vila J., Fidalgo R., Bifet A., Gavald R. and Morales-Bueno R.

"Early drift detection method". In Proceedings of the In Fourth International Workshop on

Knowledge Discovery from Data Streams. 2006.

[3] Bai S., Yi-Dong S. and Wei X. "Modeling concept drift from the perspective of classifiers".

In Proceedings of the Cybernetics and Intelligent Systems, 2008 IEEE Conference on. 1055-

1060, 2008.

[4] Baron S., Spiliopoulou M. and Günther O. "Efficient Monitoring of Patterns in Data Mining

Environments". Springer Berlin Heidelberg,253-265, 2003.

[5] Bartlett P. L., Ben-David S. and Kulkarni S. R. "Learning changing concepts by exploiting

the structure of change". In Proceedings of the Proceedings of the ninth annual conference

on Computational learning theory Desenzano del Garda, Italy, ACM. 131-139, 1996.

[6] Beyene A. and Welemariam T. "Concept Drift in Surgery Prediction". School of Computing

at Blekinge Institute of Technology, 2012.

[7] Bifet A. and Gavalda R. "Adaptive Learning from Evolving Data Streams". In Proceedings

of the Proceedings of the 8th International Symposium on Intelligent Data Analysis: Advances

in Intelligent Data Analysis VIII Lyon, France, Springer-Verlag. 249-260, 2009.

[8] Bifet A. and Gavalda R. "Kalman filters and adaptive windows for learning in data

streams". In Proceedings of the Proceedings of the 9th international conference on Discovery

Science Barcelona, Spain, Springer-Verlag. 29-40, 2006.

[9] Bifet A., Holmes G., Pfahringer B., Kirkby R., Gavald R. and #224. "New ensemble methods

for evolving data streams". In Proceedings of the Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining Paris, France, ACM. 139-

148, 2009.

[10] Bifet A., Kirkby R., Kranen P. and Reutemann P. "Massive Online Analysis Manual".

Center for Open Software Innovation, University Of Waikato, 2012.

[11] Boriah S. "Time Series Change Detection: Algorithms for Land Cover Change".

UNIVERSITY OF MINNESOTA, 2010.

[12] Boriah S., Chandola V. and Kumar V. "Similarity measures for categorical data: A

comparative evaluation". In Proceedings of the In Proceedings of the eighth SIAM

International Conference on Data Mining. 243-254, 2008.

54

[13] Brzezinski D. "MINING DATA STREAMS WITH CONCEPT DRIFT". Poznan University of

Technology, 2010.

[14] Brzezinski D. and Stefanowski J. "Reacting to Different Types of Concept Drift: The

Accuracy Updated Ensemble Algorithm". Neural Networks and Learning Systems, IEEE

Transactions on, 25, 1, 81-94, 2014.

[15] Chu F. and Zaniolo C. "Fast and Light Boosting for Adaptive Mining of Data Streams".

Springer Berlin Heidelberg,282-292, 2004.

[16] Crespo F. and Weber R. "A methodology for dynamic data mining based on fuzzy

clustering". Fuzzy Sets and Systems, 150, 2, 267-284, 2005.

[17] Domingos P. and Hulten G. "Mining high-speed data streams". In Proceedings of the Sixth

ACM SIGKDD international conference on Knowledge discovery and data mining Boston,

Massachusetts, USA, ACM. 71-80, 2000.

[18] Dries A. and Ruckert U. "Adaptive concept drift detection". Stat. Anal. Data Min., 2,

5‐6, 311-327, 2009.

[19] Fan W. "Systematic data selection to mine concept-drifting data streams". In

Proceedings of the Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining Seattle, WA, USA, ACM. 128-137, 2004.

[20] Fayyad U., Shapiro G. and Smyth P. "From data mining to knowledge discovery: an

overview". American Association for Artificial Intelligence,1-34, 1996.

[21] Gama J. "Knowledge Discovery from Data Streams". IOS Press, Fourth International

Workshop on Knowledge Discovery from Data Streams, 2007.

[22] Gama J., Fernandes R. and Rocha R. "Decision trees for mining data streams". Intell. Data

Anal., 10, 1, 23-45, 2006.

[23] Gama J., Medas P., Castillo G. and Rodrigues P. "Learning with Drift Detection". Springer

Berlin Heidelberg,286-295, 2004.

[24] Gama J., Rocha R. and Medas P. "Accurate decision trees for mining high-speed data

streams". In Proceedings of the Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining Washington, D.C., ACM. 523-528, 2003.

[25] Gama J., Žliobaite I., Bifet A., Pechenizkiy M. and Bouchachia A. "A Survey on Concept

Drift Adaptation". ACM Computing Surveys, 46, 4, 35, 2013.

[26] Gomes J. B., Menasalvas E. and Sousa P. A. C. "Learning recurring concepts from data

streams with a context-aware ensemble". In Proceedings of the Proceedings of the 2011 ACM

Symposium on Applied Computing TaiChung, Taiwan, ACM. 994-999, 2011.

55

[27] Harries M. B., Sammut C. and Horn K. "Extracting Hidden Context". Mach. Learn., 32, 2,

101-126, 1998.

[28] Hegedus I., Nyers L. and Ormandi R. "Detecting concept drift in fully distributed

environments". In Proceedings of the Intelligent Systems and Informatics (SISY), 2012 IEEE

10th Jubilee International Symposium on. 183-188, 2012.

[29] Hewahi N. and Kohail S. "Learning Concept Drift Using Adaptive Training Set Formation

Strategy". International Journal of Technology Diffusion (IJTD), 4, 1, 33-55, 2013.

[30] Hou Y. "Détection de concept drift". University of Technology of Compiègne 2012.

[31] http://www.cs.waikato.ac.nz/ml/weka/ "Weka (machine learning)". Wikipedia.

[32] http://www.cut-the-knot.org/pythagoras/DistanceFormula.shtml , Bogomolny A. "The

Distance Formula ".

[33] Hulten G., Spencer L. and Domingos P. "Mining time-changing data streams". In

Proceedings of the The seventh ACM SIGKDD international conference on Knowledge

discovery and data mining San Francisco, California, ACM. 97-106, 2001.

[34] Hulten G., Spencer L. and Domingos P. "Mining time-changing data streams". In

Proceedings of the Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining San Francisco, California, ACM. 97-106, 2001.

[35] Ikonomovska E., Gama J. and Dzeroski S. "Learning model trees from evolving data

streams". Data Min. Knowl. Discov., 23, 1, 128-168, 2011.

[36] Jing G., Bolin D., Wei F., Jiawei H. and Yu P. S. "Classifying Data Streams with Skewed

Class Distributions and Concept Drifts". Internet Computing, IEEE, 12, 6, 37-49, 2008.

[37] Katakis I., Tsoumakas G. and Vlahavas I. "An Ensemble of Classifiers for Coping with

Recurring Contexts in Data Streams". In Proceedings of the In Proceeding of 18th European

Conference on Artificial Intelligence, Patras, Greece, 2008.

[38] Kelly M. G., Hand D. J. and Adams N. M. "The impact of changing populations on classifier

performance". In Proceedings of the Fifth ACM SIGKDD international conference on

Knowledge discovery and data mining San Diego, California, USA, ACM. 367-371, 1999.

[39] Kifer D., Ben-David S. and Gehrke J. "Detecting change in data streams". In Proceedings

of the Proceedings of the Thirtieth international conference on Very large data bases - Volume

30 Toronto, Canada, VLDB Endowment. 180-191, 2004.

[40] Klinkenberg R. "Concept drift and the importance of examples". Physica-Verlag,55-77,

2003.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cut-the-knot.org/pythagoras/DistanceFormula.shtml

56

[41] Klinkenberg R. "Learning drifting concepts: Example selection vs. example weighting".

Intell. Data Anal., 8, 3, 281-300, 2004.

[42] Koh J.-L. and Lin C.-Y. "Concept Shift Detection for Frequent Itemsets from Sliding

Windows over Data Streams". Springer Berlin Heidelberg,334-348, 2009.

[43] Kolter J. Z. and Maloof M. A. "Dynamic Weighted Majority: An Ensemble Method for

Drifting Concepts". J. Mach. Learn. Res., 8, 2755-2790, 2007.

[44] Kuncheva L. "Using control charts for detecting concept change in streaming data".

School of Computer Science, Bangor University, UK, 2009.

[45] Lanquillon C. "Enhancing Text Classification to Improve Information Filtering". Kunstliche

Intelligenz, 8, 1, 29-59, 2001.

[46] Lindstrom P., Delany S. J. and Namee B. M. "Handling Concept Drift in a Text Data Stream

Constrained by High Labelling Cost". In Proceedings of the FLAIRS Conference, AAAI Press,

2010.

[47] Moreno-Torres J. G., Raeder T., Alaiz-RodriGuez R., Chawla N. V. and Herrera F. "A

unifying view on dataset shift in classification". Pattern Recogn., 45, 1, 521-530, 2012.

[48] Mouss H., Mouss D., Mouss N. and Sefouhi L. "Test of Page-Hinckley, an approach for

fault detection in an agro-alimentary production system". In Proceedings of the Control

Conference, 2004. 5th Asian. 815-818 Vol.812, 2004.

[49] Muthukrishnan S., van den Berg E. and Yihua W. "Sequential Change Detection on Data

Streams". In Proceedings of the Data Mining Workshops, 2007. ICDM Workshops 2007.

Seventh IEEE International Conference on. 551-550, 2007.

[50] Nishida K. "Learning and Detecting Concept Drift". Hokkaido University, Japan, 2008.

[51] Nishida K. and Yamauchi K. "Detecting concept drift using statistical testing". In

Proceedings of the Proceedings of the 10th international conference on Discovery science

Sendai, Japan, Springer-Verlag. 264-269, 2007.

[52] Patist J. P. "Optimal Window Change Detection". In Proceedings of the Data Mining

Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on. 557-

562, 2007.

[53] Phyu T. N. "Survey of Classification Techniques in Data Mining". The International

MultiConference of Engineers and Computer Scientists 1, 727-732, 2009.

[54] Ross G. J., Adams N. M., Tasoulis D. K. and Hand D. J. "Exponentially weighted moving

average charts for detecting concept drift". Pattern Recognition Letters, 33, 2, 191-198, 2012.

57

[55] Schlimmer J. C. and Richard H. Granger J. "Incremental Learning from Noisy Data". Mach.

Learn., 1, 3, 317-354, 1986.

[56] Sebasti˜ao R. and Gama J. a. "A Study on Change Detection Methods". In Proceedings of

the New Trends in Artificial Intelligence Aveiro, Portugal. 2009.

[57] Street W. N. and Kim Y. "A streaming ensemble algorithm (SEA) for large-scale

classification". In Proceedings of the Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining San Francisco, California, ACM. 377-382,

2001.

[58] Tan P., Steinbach M. and Kumar V. "Introduction To Data Mining". Addison-Wesley,

2006.

[59] Teaching C. f. I. i. M. "Chapter 8: Statistical Control Charts".

[60] Tsymbal A. "The Problem of Concept Drift: Definitions and Related Work". 2004.

[61] Udechukwu A., Barker K. and Alhajj R. "Mining user navigational patterns in dynamically

changing environments". In Proceedings of the Information Technology: Coding and

Computing, 2004. Proceedings. ITCC 2004. International Conference on. 372-377 Vol.372,

2004.

[62] van Leeuwen M. and Siebes A. "StreamKrimp: Detecting Change in Data Streams".

Springer Berlin Heidelberg,672-687, 2008.

[63] Vorburger P. and Bernstein A. "Entropy-based Concept Shift Detection". In Proceedings

of the Data Mining, 2006. ICDM '06. Sixth International Conference on. 1113-1118, 2006.

[64] Wang H., Fan W., Yu P. S. and Han J. "Mining concept-drifting data streams using

ensemble classifiers". In Proceedings of the Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining Washington, D.C., ACM.

226-235, 2003.

[65] Widmer G. and Kubat M. "Learning in the presence of concept drift and hidden

contexts". Mach. Learn., 23, 1, 69-101, 1996.

[66] Yang Q. and Wu X. "10 Challenging Problems In Data Mining Research". International

Journal of Information Technology and Decision Making, 5, 4, 597–604, 2006.

[67] Zeira G., Maimon O., Last M. and Rokach L. "CHANGE DETECTION IN CLASSIFICATION

MODELS INDUCED FROM TIME SERIES DATA".101-125.

[68] Zliobaite I. "Learning under Concept Drift: an Overview". Computing Research Repository

(CoRR), 1, 4784, 2010.

58

[69] Žliobaitė I. "Combining Time and Space Similarity for Small Size Learning under Concept

Drift". Springer Berlin Heidelberg,412-421, 2009.

[70] Zliobaite I. and Kuncheva L. I. "Determining the Training Window for Small Sample Size

Classification with Concept Drift". In Proceedings of the Proceedings of the 2009 IEEE

International Conference on Data Mining Workshops, IEEE Computer Society. 447-452, 2009.

